3,825 research outputs found

    The General Correlation Function in the Schwinger Model on a Torus

    Full text link
    In the framework of the Euclidean path integral approach we derive the exact formula for the general N-point chiral densities correlator in the Schwinger model on a torusComment: 17 pages, misprints corrected, references adde

    Decoherence: Concepts and Examples

    Get PDF
    We give a pedagogical introduction to the process of decoherence - the irreversible emergence of classical properties through interaction with the environment. After discussing the general concepts, we present the following examples: Localisation of objects, quantum Zeno effect, classicality of fields and charges in QED, and decoherence in gravity theory. We finally emphasise the important interpretational features of decoherence.Comment: 24 pages, LATEX, 9 figures, needs macro lamuphys.sty, to appear in the Proceedings of the 10th Born Symposiu

    Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores

    Get PDF
    Stars and more particularly massive stars, have a drastic impact on galaxy evolution. Yet the conditions in which they form and collapse are still not fully understood. In particular, the influence of the magnetic field on the collapse of massive clumps is relatively unexplored, it is thus of great relevance in the context of the formation of massive stars to investigate its impact. We perform high resolution, MHD simulations of the collapse of hundred solar masses, turbulent and magnetized clouds, using the adaptive mesh refinement code RAMSES. We compute various quantities such as mass distribution, magnetic field and angular momentum within the collapsing core and study the episodic outflows and the fragmentation that occurs during the collapse. The magnetic field has a drastic impact on the cloud evolution. We find that magnetic braking is able to substantially reduce the angular momentum in the inner part of the collapsing cloud. Fast and episodic outflows are being launched with typical velocities of the order of 3-5 km s1^{-1} although the highest velocities can be as high as 30-40 km s1^{-1}. The fragmentation in several objects, is reduced in substantially magnetized clouds with respect to hydrodynamical ones by a factor of the order of 1.5-2. We conclude that magnetic fields have a significant impact on the evolution of massive clumps. In combination with radiation, magnetic fields largely determine the outcome of massive core collapse. We stress that numerical convergence of MHD collapse is a challenging issue. In particular, numerical diffusion appears to be important at high density therefore possibly leading to an over-estimation of the number of fragments.Comment: accepted for publication in A&

    A large-scale evaluation framework for EEG deep learning architectures

    Full text link
    EEG is the most common signal source for noninvasive BCI applications. For such applications, the EEG signal needs to be decoded and translated into appropriate actions. A recently emerging EEG decoding approach is deep learning with Convolutional or Recurrent Neural Networks (CNNs, RNNs) with many different architectures already published. Here we present a novel framework for the large-scale evaluation of different deep-learning architectures on different EEG datasets. This framework comprises (i) a collection of EEG datasets currently including 100 examples (recording sessions) from six different classification problems, (ii) a collection of different EEG decoding algorithms, and (iii) a wrapper linking the decoders to the data as well as handling structured documentation of all settings and (hyper-) parameters and statistics, designed to ensure transparency and reproducibility. As an applications example we used our framework by comparing three publicly available CNN architectures: the Braindecode Deep4 ConvNet, Braindecode Shallow ConvNet, and two versions of EEGNet. We also show how our framework can be used to study similarities and differences in the performance of different decoding methods across tasks. We argue that the deep learning EEG framework as described here could help to tap the full potential of deep learning for BCI applications.Comment: 7 pages, 3 figures, final version accepted for presentation at IEEE SMC 2018 conferenc

    Sum Rules for the Dirac Spectrum of the Schwinger Model

    Full text link
    The inverse eigenvalues of the Dirac operator in the Schwinger model satisfy the same Leutwyler-Smilga sum rules as in the case of QCD with one flavor. In this paper we give a microscopic derivation of these sum rules in the sector of arbitrary topological charge. We show that the sum rules can be obtained from the clustering property of the scalar correlation functions. This argument also holds for other theories with a mass gap and broken chiral symmetry such as QCD with one flavor. For QCD with several flavors a modified clustering property is derived from the low energy chiral Lagrangian. We also obtain sum rules for a fixed external gauge field and show their relation with the bosonized version of the Schwinger model. In the sector of topological charge ν\nu the sum rules are consistent with a shift of the Dirac spectrum away from zero by ν/2\nu/2 average level spacings. This shift is also required to obtain a nonzero chiral condensate in the massless limit. Finally, we discuss the Dirac spectrum for a closely related two-dimensional theory for which the gauge field action is quadratic in the the gauge fields. This theory of so called random Dirac fermions has been discussed extensively in the context of the quantum Hall effect and d-wave super-conductors.Comment: 41 pages, Late

    Decoherence in QED at finite temperature

    Full text link
    We consider a wave packet of a charged particle passing through a cavity filled with photons at temperature T and investigate its localization and interference properties. It is shown that the wave packet becomes localized and the interference disappears with an exponential speed after a sufficiently long path through the cavity.Comment: Latex, 10 page

    Non-Markovianity, Loschmidt echo and criticality: a unified picture

    Get PDF
    A simple relationship between recently proposed measures of non-Markovianity and the Loschmidt echo is established, holding for a two-level system (qubit) undergoing pure dephasing due to a coupling with a many-body environment. We show that the Loschmidt echo is intimately related to the information flowing out from and occasionally back into the system. This, in turn, determines the non-Markovianity of the reduced dynamics. In particular, we consider a central qubit coupled to a quantum Ising ring in the transverse field. In this context, the information flux between system and environment is strongly affected by the environmental criticality; the qubit dynamics is shown to be Markovian exactly and only at the critical point. Therefore non-Markovianity is an indicator of criticality in the model considered here

    Predictability sieve, pointer states, and the classicality of quantum trajectories

    Full text link
    We study various measures of classicality of the states of open quantum systems subject to decoherence. Classical states are expected to be stable in spite of decoherence, and are thought to leave conspicuous imprints on the environment. Here these expected features of environment-induced superselection (einselection) are quantified using four different criteria: predictability sieve (which selects states that produce least entropy), purification time (which looks for states that are the easiest to find out from the imprint they leave on the environment), efficiency threshold (which finds states that can be deduced from measurements on a smallest fraction of the environment), and purity loss time (that looks for states for which it takes the longest to lose a set fraction of their initial purity). We show that when pointer states -- the most predictable states of an open quantum system selected by the predictability sieve -- are well defined, all four criteria agree that they are indeed the most classical states. We illustrate this with two examples: an underdamped harmonic oscillator, for which coherent states are unanimously chosen by all criteria, and a free particle undergoing quantum Brownian motion, for which most criteria select almost identical Gaussian states (although, in this case, predictability sieve does not select well defined pointer states.)Comment: 10 pages, 13 figure

    Topologically decoherence-protected qubits with trapped ions

    Full text link
    We show that trapped ions can be used to simulate a highly symmetrical Hamiltonian with eingenstates naturally protected against local sources of decoherence. This Hamiltonian involves long range coupling between particles and provides a more efficient protection than nearest neighbor models discussed in previous works. Our results open the perspective of experimentally realizing in controlled atomic systems, complex entangled states with decoherence times up to nine orders of magnitude longer than isolated quantum systems.Comment: 4 page

    Decoherence and the Nature of System-Environment Correlations

    Full text link
    We investigate system-environment correlations based on the exact dynamics of a qubit and its environment in the framework of pure decoherence (phase damping). We focus on the relation of decoherence and the build-up of system-reservoir entanglement for an arbitrary (possibly mixed) initial qubit state. In the commonly employed regime where the qubit dynamics can be described by a Markov master equation of Lindblad type, we find that for almost all qubit initial states inside the Bloch sphere, decoherence is complete while the total state is still separable - no entanglement is involved. In general, both "separable" and "entangling" decoherence occurs, depending on temperature and initial qubit state. Moreover, we find situations where classical and quantum correlations periodically alternate as a function of time in the regime of low temperatures
    corecore